Skip to contents

package to create descriptive tables

CRAN version

Overview

compareGroups is an R package available on CRAN which performs descriptive tables displaying means, standard deviation, quantiles or frequencies of several variables. Also, p-value to test equality between groups is computed using the appropiate test.

With a very simple code, nice, compact and ready-to-publish descriptives table are displayed on R console. They can also be exported to different formats, such as Word, Excel, PDF or inserted in a R-Sweave or R-markdown document.

You will find an extensive manual describing all compareGropus capabilities with real examples in the vignette.

Also, compareGroups package has been published in Journal of Statistical Software [Subirana et al, 2014] (https://www.jstatsoft.org/v57/i12/).


Who we are

compareGroups is developed and maintained by Isaac Subirana, Hector Sanz, Joan Vila and collaborators at the cardiovascular epidemiology research unit (URLEC), located at Barcelona Biomedical Research Park (PRBB) .






As the driving force behind the REGICOR study, URLEC has extensive experience in statistical epidemiology, and is a national reference centre for research into cardiovascular diseases and their risk factors.




Gets started

Install the package from CRAN

install.packages("compareGroups")

or the lattest version from Github

library(devtools)
devtools::install_github("isubirana/compareGroups")

Building the descriptive table

library(compareGroups)

data(regicor)

tab <- descrTable(year ~ . -id , regicor, hide.no = "no", 
                  method=c(triglyc=2, tocv=2, todeath=2), sd.type = 3)

export2md(tab, header.background = "black", header.color = "white", 
          caption = "Summary by intervention group")
Summary by intervention group
1995 2000 2005 p.overall
N=431 N=786 N=1077
Age 54.1±11.7 54.3±11.2 55.3±10.6 0.078
Sex: 0.506
Male 206 (47.8%) 390 (49.6%) 505 (46.9%)
Female 225 (52.2%) 396 (50.4%) 572 (53.1%)
Smoking status: <0.001
Never smoker 234 (56.4%) 414 (54.6%) 553 (52.2%)
Current or former < 1y 109 (26.3%) 267 (35.2%) 217 (20.5%)
Former >= 1y 72 (17.3%) 77 (10.2%) 290 (27.4%)
Systolic blood pressure 133±19.2 133±21.3 129±19.8 <0.001
Diastolic blood pressure 77.0±10.5 80.8±10.3 79.9±10.6 <0.001
History of hypertension 111 (25.8%) 233 (29.6%) 379 (35.5%) <0.001
Hypertension treatment 71 (16.5%) 127 (16.2%) 230 (22.2%) 0.002
Total cholesterol 225±43.1 224±44.4 213±45.9 <0.001
HDL cholesterol 51.9±14.5 52.3±15.6 53.2±14.2 0.208
Triglycerides 94.0 [71.0;136] 98.0 [72.0;133] 98.0 [72.0;139] 0.762
LDL cholesterol 152±38.4 149±38.6 136±39.7 <0.001
History of hyperchol. 97 (22.5%) 256 (33.2%) 356 (33.2%) <0.001
Cholesterol treatment 28 (6.50%) 68 (8.80%) 132 (12.8%) <0.001
Height (cm) 163±9.21 162±9.39 163±9.05 0.003
Weight (Kg) 72.3±12.6 73.8±14.0 73.6±13.9 0.150
Body mass index 27.0±4.15 28.1±4.62 27.6±4.63 <0.001
Physical activity (Kcal/week) 491±419 422±377 351±378 <0.001
Physical component 49.3±8.08 49.0±9.63 50.1±8.91 0.032
Mental component 49.2±11.3 48.9±11.0 46.9±10.8 <0.001
Cardiovascular event 10 (2.51%) 35 (4.72%) 47 (4.59%) 0.161
Days to cardiovascular event or end of follow-up 1728 [746;2767] 1617 [723;2596] 1775 [835;2723] 0.096
Overall death 18 (4.65%) 81 (11.0%) 74 (7.23%) <0.001
Days to overall death or end of follow-up 1557 [812;2689] 1609 [734;2549] 1734 [817;2713] 0.249

Stratified table

tabstrat <- strataTable(update(tab, . ~ . -sex), "sex")

export2md(tabstrat, header.background = "black", header.color = "white", size=9)
Summary descriptive tables


Male

Female

1995 2000 2005 p.overall 1995 2000 2005 p.overall
N=206 N=390 N=505 N=225 N=396 N=572
Age 54.1±11.8 54.3±11.2 55.4±10.7 0.212 54.1±11.7 54.4±11.2 55.2±10.6 0.351
Smoking status: <0.001 <0.001
Never smoker 52 (26.5%) 112 (29.7%) 137 (27.5%) 182 (83.1%) 302 (79.3%) 416 (74.0%)
Current or former < 1y 77 (39.3%) 199 (52.8%) 134 (26.9%) 32 (14.6%) 68 (17.8%) 83 (14.8%)
Former >= 1y 67 (34.2%) 66 (17.5%) 227 (45.6%) 5 (2.28%) 11 (2.89%) 63 (11.2%)
Systolic blood pressure 134±18.4 137±19.3 132±18.7 0.002 132±19.8 129±22.6 127±20.5 0.008
Diastolic blood pressure 79.0±9.27 83.0±9.54 81.7±10.8 <0.001 75.2±11.3 78.6±10.6 78.3±10.0 <0.001
History of hypertension 50 (24.3%) 110 (28.2%) 181 (36.2%) 0.002 61 (27.1%) 123 (31.1%) 198 (34.8%) 0.097
Hypertension treatment 31 (15.0%) 48 (12.3%) 110 (22.8%) <0.001 40 (17.8%) 79 (19.9%) 120 (21.7%) 0.446
Total cholesterol 224±43.9 224±43.9 210±40.3 <0.001 226±42.4 224±44.9 216±50.3 0.004
HDL cholesterol 46.5±13.1 47.3±12.6 48.1±12.4 0.290 56.9±13.9 57.4±16.7 57.8±14.2 0.783
Triglycerides 110 [79.0;149] 113 [84.0;145] 108 [79.0;149] 0.825 86.0 [66.0;113] 87.0 [66.0;118] 90.0 [66.0;128] 0.496
LDL cholesterol 153±39.6 152±39.1 137±36.0 <0.001 150±37.3 146±38.0 136±42.6 <0.001
History of hyperchol. 48 (23.3%) 138 (35.8%) 167 (33.2%) 0.007 49 (21.8%) 118 (30.6%) 189 (33.3%) 0.006
Cholesterol treatment 17 (8.25%) 38 (9.84%) 59 (12.2%) 0.256 11 (4.89%) 30 (7.75%) 73 (13.2%) <0.001
Height (cm) 170±7.34 168±7.17 170±7.43 0.021 158±6.31 156±6.50 158±6.24 <0.001
Weight (Kg) 77.6±11.7 80.1±12.3 80.2±11.6 0.023 67.3±11.3 67.6±12.6 67.7±13.0 0.919
Body mass index 26.9±3.64 28.2±3.89 27.9±3.58 <0.001 27.2±4.57 28.0±5.25 27.3±5.39 0.084
Physical activity (Kcal/week) 422±418 356±362 439±467 0.014 553±412 486±382 273±253 <0.001
Physical component 50.1±6.71 50.9±8.58 51.5±8.07 0.110 48.6±9.16 47.1±10.2 48.9±9.45 0.027
Mental component 52.1±9.67 50.9±10.2 49.2±9.67 0.001 46.5±12.2 46.9±11.3 44.7±11.2 0.017
Cardiovascular event 6 (3.06%) 21 (5.74%) 19 (3.96%) 0.272 4 (1.98%) 14 (3.73%) 28 (5.15%) 0.139
Days to cardiovascular event or end of follow-up 1619 [719;2715] 1613 [667;2509] 1822 [897;2794] 0.043 1828 [853;2779] 1617 [772;2679] 1750 [746;2692] 0.427
Overall death 12 (6.45%) 46 (12.5%) 29 (6.08%) 0.002 6 (2.99%) 35 (9.43%) 45 (8.24%) 0.018
Days to overall death or end of follow-up 1557 [836;2680] 1606 [751;2490] 1688 [785;2516] 0.947 1587 [786;2717] 1620 [730;2583] 1809 [867;2804] 0.141

Visual exploration

plot(tab[“sex”]) plot(tab[“age”])

Computing Odds Ratios

data(SNPs)

tabor <- descrTable(casco ~ .-id, SNPs, show.ratio=TRUE, show.p.overall=FALSE)

export2md(tabor[1:4])
Summary descriptives table by groups of `casco’
0 1 OR p.ratio
N=47 N=110
sex:
Male 21 (44.7%) 54 (49.1%) Ref. Ref.
Female 26 (55.3%) 56 (50.9%) 0.84 [0.42;1.67] 0.619
blood.pre 13.1 (0.88) 12.9 (1.03) 0.78 [0.55;1.11] 0.174
protein 39938 (19770) 44371 (24897) 1.00 [1.00;1.00] 0.280
snp10001:
CC 2 (4.26%) 10 (9.09%) Ref. Ref.
CT 21 (44.7%) 32 (29.1%) 0.33 [0.04;1.43] 0.147
TT 24 (51.1%) 68 (61.8%) 0.60 [0.08;2.55] 0.521

Computing Hazard Ratios

library(survival)
regicor$tcv <- Surv(regicor$tocv, regicor$cv=="Yes")

tabhr <- descrTable(tcv ~ .-id-cv-tocv, regicor, 
           method=c(triglyc=2, tocv=2, todeath=2),
           hide.no="no", ref.no="no",
           show.ratio=TRUE, show.p.overall=FALSE)


export2md(tabhr[1:10], header.label=c("p.ratio"="p-value"),
          caption="Descriptives by cardiovascular event")  
Descriptives by cardiovascular event
No event Event HR p-value
N=2071 N=92
Recruitment year:
1995 388 (18.7%) 10 (10.9%) Ref. Ref.
2000 706 (34.1%) 35 (38.0%) 1.95 [0.96;3.93] 0.063
2005 977 (47.2%) 47 (51.1%) 1.82 [0.92;3.59] 0.087
Age 54.6 (11.1) 57.5 (11.0) 1.02 [1.00;1.04] 0.021
Sex:
Male 996 (48.1%) 46 (50.0%) Ref. Ref.
Female 1075 (51.9%) 46 (50.0%) 0.92 [0.61;1.39] 0.696
Smoking status:
Never smoker 1099 (54.3%) 37 (40.2%) Ref. Ref.
Current or former < 1y 506 (25.0%) 47 (51.1%) 2.67 [1.74;4.11] <0.001
Former >= 1y 419 (20.7%) 8 (8.70%) 0.55 [0.26;1.18] 0.123
Systolic blood pressure 131 (20.3) 138 (21.5) 1.02 [1.01;1.02] 0.001
Diastolic blood pressure 79.5 (10.4) 82.9 (12.3) 1.03 [1.01;1.05] 0.002
History of hypertension 647 (31.3%) 38 (41.3%) 1.52 [1.01;2.31] 0.047
Hypertension treatment 382 (18.7%) 22 (23.9%) 1.37 [0.85;2.22] 0.195
Total cholesterol 218 (44.5) 224 (50.4) 1.00 [1.00;1.01] 0.207
HDL cholesterol 52.8 (14.8) 50.4 (13.3) 0.99 [0.97;1.00] 0.114

Web-based User Interface

For those not familiar to R syntax, a Web User Interface (WUI) has been implemented using Shiny tools, which can be used off line by typing cGroupsWUI() after having compareGroups package installed and loaded, or remotely just accessing the application hosted in a shinyapp.io server.